Tag Archives: Nikon 1 J1

Gimbal Progress

Well the gimbal controller finally showed up, it spent a week in New York, presumably making its way through customs, it was shipped from Latvia. It seems to be working pretty good, The one thing that I would definitely recommend are gimbal motors with hollow axel shafts, this would make  wiring the gimbals and IMU much easier and clean. I’m now ready to mount it on the hex copter and see what happens, stay tuned…

First Successful Pano From My Multi-Rotors!

360 degree panorama of the End of the Ash River Trail: (click on it for a larger image)

_DSC2470 Panorama_ps

If you have been following me at all concerning my adventures into multi-rotor platforms for photography you may already know that I was pursuing a rock steady stable platform from which to take aerial photography shots from. Videography is definitely a back burner issue with me, my main interest is with still photography.

My initial disappointment was with the DJI Phantom 2 Vision in that the camera was rather poor quality, at least when measured against professional photographic equipment. The dynamic range was low, the lens was too wide an angle, the fisheye aspects were unacceptable, and worse the images from this camera were difficult at best to correct for image distortion.

I almost immediately sought out alternatives, the Go-Pro was also unacceptable to me since it also has a pronounced fisheye look to its images. Initially I adapted my Nikon J1 camera to the Phantom but found that it was simply too heavy to be safely flown with the Phantom. After exploring other avenues I found that I would have to spend over five grand to get a decent platform that could safely lift my Nikon J1, let alone my intended camera, my Nikon D800.

I was searching for a cost friendly alternative so I first built a quad using DJI’s E800 motor/ESC combination but found that these motors don’t come close to their advertised thrust in their “Tuned Propulsion System” it should, in all honesty, be called the Detuned Propulsion System. So I set out to build my hexacopter.

I was having troubles tuning the necessary vibration isolators to prevent the inevitable resolution robbing vibrations away from the camera. I was even looking to scrap my drone program entirely in favor of a balloon based system which has very little or no vibrations at all.

Then it dawned on me after a test flight. I have used tie cord as a safety backup in case the vibration isolators would become separated from the camera platform and after a previous hard landing all four indeed became detached. The next flight I forgot to reattach the isolators so the platform was hanging by the tie cord loops. The four tie cord loops were not all equal in length so the camera was flown at a ten degree, or so, tilt angle. After landing and giving my self a Homer Simpson DUH! I decided to download the flashcard and see what I got.


To my surprise the sharpest images that I have taken to this day from any aerial platform! That was the key! For the first time I was able to stitch a decent ten image panorama together! The problem with fisheye lenses is that they don’t stitch into decent quality images very well. Even though the camera was tilted and the copter wavered around due to both the normal GPS wondering and well as the ten to twenty MPH gusty breezes my stitching program, PtGui Pro,  was able to easily stitch the ten images together. The other main problem with this particular panorama is that I did not take the images with enough overlap. While there are some areas of the image that certainly need improvement it is the IMAGE RESOLUTION that beats all previous images taken from any ariel platform, at least by myself!

Next to stabilize it even more I will be looking into a downward facing stabilization camera to supplement the GPS for position hold as well as an ultrasonic range finder to supplement the altitude hold function. Using vibration isolators between the camera platform and then suspending the gimbal from the airframe with tie cord is a perfect answer for total vibration isolation for still imagery, while this is obviously not a very good solution for videography – well I really don’t care that much about moving pictures anyway 😉

Update: I may have spoken too soon when suggesting that tie cord may not work for video, here is a video taken with the exact same setup as was used for my stitched pano:

You can clearly see the difficulties in taking a series of still images to stitch together for a pano, the copter is flailing around in the wind. Most of the jitteriness seen in the above video would be minimized when a two axis stabilizing gimbal is utilized. Note that the video from the Nikon J1 is not very good to begin with, compared to the D800, slow panning on a stationary tripod results in marked  loss of resolution, not seen at all in this video. I am becoming convinced that a third axis gimbal motor may be necessary due to the unreliably unstable rotation control of the hexacopter is around the z-axis, especially when windy. Yup, retractable landing gear and a third axis gimbal motor may ultimately be necessary.

PixHawk HexCopter Powered by DJI E800 Tuned Propulsion System

Well here it is, my first incarnation prototype for a HexCopter. I have to say that a hex handles so much nicer than a quad, much more stable and predictable. This version weighs about 11 lb. (5 kg) or about 830 g/motor or just 30 g above DJI’s recommended 800 g/motor. The total maximum flight time, with an 10,000 mAh battery, was just under 20 min. with the final battery voltage of 21.35 Volts. The DJI ESC’s started giving yellow LED signals with a rapid loss of altitude afterwords. Using a Return To Launch (RTL) voltage of 22.2V should give ample reserve RTL time for a useful flight time of about fifteen minutes. Update: My battery charger reported that it took 10,325 mAh to recharge the battery.

There are several areas where weight can be shaved to allow for the additional weight for my Nikon D800. I am still fine tuning the vibration isolators for my Nikon J1 camera, there is no gimbal motors used at this time. If you look closely at the video the Nikon J1 is having severe problems with the autofocus, I’m probably going to have to give up and simply set the focus manually to infinity, as well as resort to using manual or aperture exposure modes, and forget about 360 degree pano shots, especially near sunrise or sunsets.

I’m not yet sure if I need to reduce the number of isolators, I’m currently using six DJI phantom isolators. I bought isolators for DJI larger gimbals but I found that these were way too stiff for the Nikon J1, although those are probably the ones I will need to use for my D800.


For all of those paranoid morons who are chomping at the bit to shoot down a drone I added an example of just how close a typical drone used by an amateur photographer would have to be to get any meaningful images. All of you dipsticks should realize that only a multi-million dollar military grade drone will be able to count the pimples on your nude sunbathing girlfriend/wives butt-cheeks, and from an altitude higher than you will ever be able to see or hear it from, let alone, shoot it down from 😉


My FrankenDrone Gets Eyes

Well I finally attached my Nikon J1 onto my quad, actually I first attached it a few weeks back but the jello effect prevented decent video. Actually the jello effect was not that bad but it still was there. I used the vibration isolation platform from my Phantom Vision 2 so it is a bit overloaded. I must shop around for some heavier duty isolators.

You will notice that when pointed into the wind everything is fine, however, when pointing away from the wind the copter had to point nose high in order to offset the wind. This caused the isolator platform to rest on the battery causing a slight jello effect which then caused the camera difficulties auto focusing. Also note the tilt of the horizon when pointing perpendicular to the wind.


The battery tested well, with out any wind, the battery flight time for simply hovering was 30 minutes from full charge to 22.2 Volts, where I have programmed the PixHawk to Return To Launch (RTL) mode, providing ample reserves. But in todays wind the flight time was limited to about eighteen minutes, Remember while stationary hovering in one position it was actually fighting the wind and actually flying at an airspeed of 15-20 MPH+.

I am now ready to design and build a two axis gimbal for it as well. Here is a short video, note that I was testing this beast in a 15-20 MPH wind that was gusting to well over 30 MPH. While the video may cause air sickness I think the PixHawk handled it quite well, at least after it decided on a point on which to hold its position. I had to provide some inputs initially to prevent it from blowing into a tree.

Making Carbonless Fuel From Water

Here is a slow motion video cracking (electrolysis)  of water (H2O) into its constituent elements Hydrogen and Oxygen. A great carbonless fuel if someone ever figures out how to crack it more efficiently. The electrode is in saltwater and the electrodes have a potential of 12V drawing a current of 2A.

Just collect the hydrogen and compress it into a cylinder and wall-a! A carbon free emission automobile. Too bad it takes more energy to produce the hydrogen than you can possibly get out of it. It would be an act of insanity to do something like that, oh… wait a minute… that is also true for ethanol production for use in automobiles. ;-{

********* update 2014-09-17 ***************

After an extensive debate on YouTube a commenter decided to delete all of his comments that exemplify the ridiculousness and irrationality of how an idealist (liberal) argues. He obviously has been so humiliated that he had to remove the evidence of his stupidity. Here is a link to a copy of most of the exchange before he deleted it:


The bottom line is that this post displays the academic fallacy in that the academic and scientific communities have been nearly completely silent in that nearly all “green” energy sources cannot now, nor will ever be able to, produce wealth. Instead they consume wealth, as well as polluting more when you consider their entire processes, which is why they nearly all require government subsidies and artificial punitive penalties on those from which wealth can be created, mainly from fossil fuels and nuclear energy sources.

Sorry but throwing an exorbitant amounts of money to the “Big Government” research industry will not spontaneously produce a Mr. Fusion in which we can run our time traveling automobiles on empty beer cans an banana peels.

Another Moon Shot for the CGEM Fanboys

Since a CGEM fanboy did not like my moon image from last night here is another, this time using my D800 and seven exposure image set and High Dynamic Range (HDR) processing.

<sarc on> I hope this passes your highly refined expectations. <sarc off>


Now, I could obviously improve upon this with an equatorial mount, yes even the CGEM, but why bother for a web image? And yes, this one is also shrunk and compressed into a jpeg image. The D800 has a much higher quality sensor over the Nikon 1 J1 sensor and therefore has far less chromatic aberrations. But I did not need to attach sandbags when using the Nikon 1 J1.

And then again, I’m making a case to push Nikon into making a professional grade mirror-less camera, I’m definitely not trying to impress any amateur CGEM fanboys.

In addition the Nikon cameras and lenses are NOT optimized for astrophotography and yet they still kick ass over a 9.25 inch Celestron optical tube that was supposedly optimized for astrophotography, so bite on that one CGEM fanboys.

Can’t Get Enough of the Moon


I just can’t get enough of the Moon:


Once again, taken with my Nikon 1 J1 with the 400mm f/2.8 and 2.0x stacked with a 1.4x teleconverter. And yes, once again, there is no substitute for a mechanical-less (i.e. shutter-less and mirror-less) super telephoto setup.

Note that I tried to get an image of Saturn but the “seeing” conditions proved fairly poor, the rings did not resolve themselves from the main gaseous body 🙁

Surprising how well the Moon worked out 🙂